

PIC18F87J11 FAMILY

PIC18F87J11 Family Silicon Errata and Data Sheet Clarification

The PIC18F87J11 family of devices that you have received conform functionally to the current Device Data Sheet (DS39778**E**), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2.

The errata described in this document will be addressed in future revisions of the PIC18F87J11 family silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A6 or C2, respectively).

Data Sheet clarifications and corrections start on page 6, following the discussion of silicon issues.

The silicon revision level can be identified using the current version of $MPLAB^{(\!R\!)}$ IDE and Microchip's programmers, debuggers, and emulation tools, which are available at the Microchip corporate web site (www.microchip.com).

For example, to identify the silicon revision level using MPLAB IDE in conjunction with a hardware debugger:

- 1. Using the appropriate interface, connect the device to the hardware debugger.
- 2. Open an MPLAB IDE project.
- 3. Configure the MPLAB IDE project for the appropriate device and hardware debugger.
- 4. Based on the version of MPLAB IDE you are using, do one of the following:
 - a) For MPLAB IDE 8, select <u>Programmer ></u> <u>Reconnect</u>.
 - b) For MPLAB X IDE, select <u>Window ></u> <u>Dashboard</u> and click the Refresh Debug Tool Status icon ().
- 5. Depending on the development tool used, the part number *and* Device Revision ID value appear in the **Output** window.

The DEVREV values for the various PIC18F87J11 family silicon revisions are shown in Table 1.

Part Number	Device ID ⁽¹⁾		Revision ID for Silicon Revision ⁽²⁾								
Part Number	Device ID	A1	A2	A4	A5	A6	C1	C2			
PIC18F66J11	444h										
PIC18F66J16	446h						10h	13h			
PIC18F67J11	448h	1h	2h	4h	56	6h					
PIC18F86J11	44Eh		211	411	5h	011					
PIC18F86J16	450h										
PIC18F87J11	452h										

TABLE 1: SILICON DEVREV VALUES

Note 1: The Device IDs (DEVID and DEVREV) are located at the last two implemented addresses of configuration memory space. They are shown in hexadecimal in the format "DEVID DEVREV".

2: Refer to the "PIC18F6XJXX/8XJXX Flash Microcontroller Programming Specification" (DS39644) for detailed information on Device and Revision IDs for your specific device.

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

		Item		Affected Revisions ⁽¹⁾						
Module	Feature	Num	Issue Summary	A1	A2	A4	A5	A6	C1	C2
Master Synchronous Serial Port (MSSPx)	I ² C Slave Reception	1.	When configured for I ² C slave reception, the MSSPx module may not receive the correct data if the SSPxBUF register is not read within a window after an SSPxIF interrupt occurs.	х	x	х	х	х	x	х
Oscillator Configurations (PLL)	PLL	2.	When Phase Lock Loop (PLL) is enabled, if the PLL input frequency is higher than 8 MHz, there may be problems accessing the RAM.	х	х					
Voltage Regulator	VDDCORE	3.	If VDDCORE drops below approximately 2.45V, while the on-chip core voltage regulator is enabled and operating in Voltage Tracking mode, the REGSLP bit (WDTCON <7>) will be automatically cleared.	x						
SRAM	Read/Write	4.	Any read or write access to SRAM will increase the current consumption of the device – varying with how often the SRAM is accessed.	х						
Low-Voltage Detect	LVDSTAT	5.	The LVDSTAT VDDCORE Status bit is not implemented in the cited revision of silicon.	х						
MSSPx (I2C Master)	I ² C Master mode	6.	In Master mode, the first clock may become narrower than the configuration width if the slave performs a clock stretch and release.	x	x	x	х	х	x	
Enhanced Universal Syn- chronous Asynchronous Receiver Transmitter (EUSART)	Synchronous Mode	7.	The TRMT bit may not indicate when the TSR egister is empty.		x	x	х	х	x	x
Timer1/3	Interrupt	8.	When the timer is operated in Asynchronous External Input mode, unexpected interrupt flag generation may occur.	х	x	х	х	х	х	x

TABLE 2: SILICON ISSUE SUMMARY

Note 1: Only those issues indicated in the last column apply to the current silicon revision.

Silicon Errata Issues

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A6 or C2, respectively).

1. Module: Master Synchronous Serial Port (MSSPx)

When configured for I²C slave reception, the MSSPx module may not receive the correct data, in extremely rare cases. This occurs only if the Serial Receive/Transmit Buffer Register (SSPxBUF) is not read within a window after the SSPxIF interrupt (PIRx<3>) has occurred.

Work around

The issue can be resolved in either of these ways:

• Prior to the I²C slave reception, enable the clock stretching feature.

This is done by setting the SEN bit (SSPxCON2<0>).

• Each time the SSPxIF is set, read the SSPxBUF before the first rising clock edge of the next byte being received.

Affected Silicon Revisions

A1	A2	A4	A5	A6	C1	C2	
Х	Х	Х	Х	Х	Х	Х	

2. Module: Oscillator Configurations (PLL)

When Phase Lock Loop (PLL) is enabled, if the PLL input frequency is higher than 8 MHz, there may be problems accessing the RAM.

Work around

Limit the PLL input frequency from 4 MHz to 8 MHz. This will cause the system clock to operate from 16 MHz to 32 MHz.

If it is necessary to run the device above 32 MHz, do not enable PLL and use the EC mode.

Affected Silicon Revisions

A1	A2	A4	A5	A6	C1	C2	
Х	Х						

3. Module: Voltage Regulator

If VDDCORE drops below approximately 2.45V while the on-chip core voltage regulator is enabled, and operating in Voltage Tracking mode, the REGSLP bit (WDTCON <7>) will be automatically cleared. The REGSLP bit cannot be set again by firmware until VDDCORE rises back above the 2.45V approximate threshold.

Additionally, the REGSLP bit retains its previous state upon all Resets except POR.

Work around

None.

Affected Silicon Revisions

A1	A2	A4	A5	A6	C1	C2	
Х							

4. Module: SRAM

Any access to SRAM, either in the form of read or write operations, will increase the current consumption of the device, depending on how often the SRAM is accessed. A small current increase is normal, but in this cited silicon revision, the difference may be significant and of particular concern for low-power applications.

For further details, see Table 3.

TABLE 3: **TYPICAL CURRENT** CONSUMPTION

Ca	ise 1:								
Voltage Regulator Enable Temperature = +25°C SEC_RUN mode using 3.		er1 Crys	stal						
Condition	IDD (μ A)	V	od (V)						
No RAM access ⁽¹⁾ 59 3.3									
Typ RAM access ⁽²⁾ 201 3.3									
Extreme RAM access ⁽³⁾ 906 3.3									
Ca	ise 2:								
Voltage Regulator Disable VDDCORE is tied to VDD Temperature = +25°C SEC_RUN mode using 3.		er1 Crys	stal						
Condition	ΙDD (μ Α)	Vdd (V)	VDDCORE (V)						
No RAM access ⁽¹⁾	20	2.5	2.5						
Typ RAM access ⁽²⁾	132	2.5	2.5						
Extreme RAM access ⁽³⁾	723	2.5	2.5						

Note 1: Code execution patterns where no instructions access SRAM.

> 2: Code execution that accesses SRAM, once every seven instruction cycles.

3: Code execution where every instruction cycle executes an instruction that accesses SRAM.

Work around

None.

Affected Silicon Revisions

A1	A2	A4	A5	A6	C1	C2	
Х							

5. Module: Low-Voltage Detect

LVDSTAT. The VDDCORE Status bit (WDTCON<6>), is not implemented in this revision of silicon.

Work around

None.

Affected Silicon Revisions

A1	A2	A4	A5	A6	C1	C2	
Х							

6. Module: MSSPx (I²C Master)

If the module is in I²C Master mode, and the slave performs clock stretching, the first clock pulse after the slave releases the SCLx line may be narrower than the configured clock width. This may result in the slave missing the first clock in the next transmission/reception.

Work around

If the module is in I²C Master mode, do not allow the slave to perform clock stretching. Alternately, the master can slow down the SCLx clock frequency to a level where the slave can detect the narrowed clock pulse.

Affected Silicon Revisions

A1	A2	A4	A5	A6	C1	C2	
Х	Х	Х	Х	Х	Х		

Module: Enhanced Universal 7. Synchronous Asynchronous **Receiver Transmitter (EUSART)**

In Synchronous Slave Transmission mode, the TRMT bit (TXSTA<1>) may not indicate when the TSR register is empty.

Work around

Instead of polling the TRMT bit to determine the status of the EUSART, poll the TXIF flag (PIR1<4>) to determine when new data can be written to the TXREG register.

Affected Silicon Revisions

A1	A2	A4	A5	A6	C1	C2	
Х	Х	Х	Х	Х	Х	Х	

8. Module: Timer1/3

When Timer1 or Timer3 is operated in Asynchronous External Input mode, unexpected interrupt flag generation may occur if an external clock edge arrives too soon following a firmware write to the TMRxH:TMRxL registers. An unexpected interrupt flag event may also occur when enabling the module or switching from Synchronous to Asynchronous mode.

Work around

This issue only applies when operating the timer in Asynchronous mode. Whenever possible, operate the timer module in Synchronous mode to avoid spurious timer interrupts.

If Asynchronous mode must be used in the application, potential strategies to mitigate the issue may include any of the following:

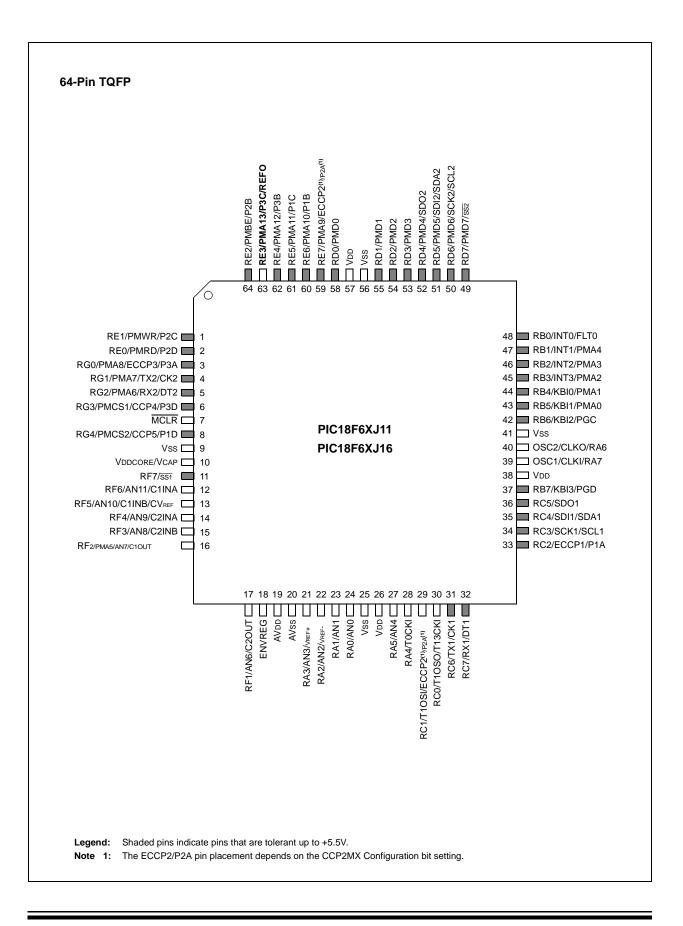
- Design the firmware so it does not rely on the TMRxIF flag or keep the respective interrupt disabled. The timer still counts normally and does not reset to 0x0000 when the spurious interrupt flag event is generated.
- Design the firmware so that it does not write to the TMRxH:TMRxL registers or does not periodically disable/enable the timer, or switch modes. Reading from the timer does not trigger the spurious interrupt flag events.
- If the firmware must use the timer interrupts and must write to the timer (or disable/enable, or mode switch the timer), implement code to suppress the spurious interrupt event, should it occur. This can be achieved by following the process shown in Example 1.

EXAMPLE 1: ASYNCHRONOUS TIMER MODE WORK AROUND TO AVOID SPURIOUS INTERRUPT

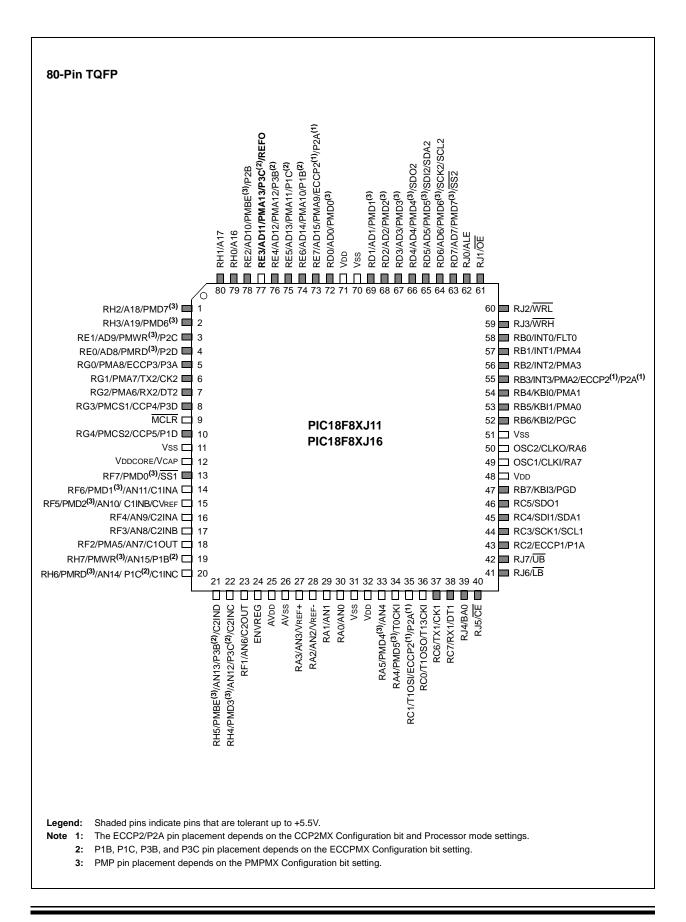
//Timerl update procedure in	asynchronous mode										
//The code below uses Timer1	as example										
<pre>T1CONbits.TMR1ON = 0;</pre>	//Stop timer from incrementing										
PIE1bits.TMR1IE = 0;	//Temporarily disable Timer1 interrupt vectoring										
$TMR1H = 0 \times 00;$	//Update timer value										
TMR1L = 0x00;											
T1CONbits.TMR1ON = 1;	//Turn on timer										
//Now wait at least two full T1CKI periods + 2T _{CY} before re-enabling Timer1 interrupts.											
//Depending upon clock edge t	//Depending upon clock edge timing relative to TMR1H/TMR1L firmware write operation,										
//a spurious TMR1IF flag even	t may sometimes assert. If this happens, to suppress										
//the actual interrupt vector	ing, the TMR1IE bit should be kept clear until										
//after the "window of opport	unity" (for the spurious interrupt flag event has passed).										
//After the window is passed,	no further spurious interrupts occur, at least										
//until the next timer write	(or mode switch/enable event).										
while(TMR1L < 0x02);	//Wait for 2 timer increments more than the Updated Timer										
	//value (indicating more than 2 full T1CKI clock periods elapsed)										
NOP();	//Wait two more instruction cycles										
NOP();											
PIR1bits.TMR1IF = 0;	//Clear TMR1IF flag, in case it was spuriously set										
PIElbits.TMRlIE = 1;	//Now re-enable interrupt vectoring for timer 1										

Affected Silicon Revisions

A1	A2	A4	A5	A6	C1	C2	
Х	Х	Х	Х	Х	Х	Х	


Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS39778**E**):


Note:	Corrections are shown in bold . Where		
	possible, the original bold text formatting		
	has been removed for clarity.		

1. Module: I/O Ports

PORTE pin RE3 is not +5.5V tolerant as indicated in the data sheet. The pin diagrams should be corrected to read as follows:

PIC18F87J11 FAMILY

2. Module: Input Voltage Levels

Table 11-1 in Section 11.1.1 should be corrected to read as follows:

Port or Pin	Tolerated Input	Description
PORTA<7:0>	Vdd	Only VDD input levels are tolerated.
PORTC<1:0>		
PORTE<3>		
PORTF<6:1>		
PORTH<7:4> ⁽¹⁾		
PORTB<7:0>	5.5V	Tolerates input levels above VDD, useful for most standard logic.
PORTC<7:2>		
PORTD<7:0>		
PORTE<7:4>		
PORTE<2:0>		
PORTF<7>		
PORTG<4:0>		
PORTH<3:0>(1)		
PORTJ<7:0> ⁽¹⁾	r 	

TABLE 11-1:INPUT VOLTAGE LEVELS

Note 1: These ports are not available on PIC18F6XJ1X devices.

PIC18F87J11 FAMILY

APPENDIX A: DOCUMENT REVISION HISTORY

Rev A Document (2/2010)

Combined existing silicon and data sheet errata documents into the new, single document format. Added the A6 silicon revision, but no issues or clarifications.

This document replaces these errata documents:

- DS80418A, "PIC18F87J11 Family Rev. A5 Silicon Errata"
- DS80417A, "PIC18F87J11 Family Rev. A4 Silicon Errata"
- DS80344A, "PIC18F87J11 Family Rev. A2 Silicon Errata"
- DS80305B, "PIC18F87J11 Family Rev. A1 Silicon Errata"
- DS80408B, "PIC18F87J11 Family Data Sheet Errata"

Rev B Document (7/2010)

Added silicon issue 6 (MSSPx I²C[™] Master).

Added data sheet clarifications 10 and 11 (Memory Organization).

Rev C Document (8/2010)

Added silicon revision B0; includes existing silicon issues 1 (Master Synchronous Serial Port – MSSPx) and 6 (MSSPx – I^2C Master).

No new data sheet clarifications added.

Rev D Document (2/2011)

Replaced silicon revision B0 with revision C1 for lower pin count devices. Added silicon issue 12 (Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART). Removed data sheet clarification 12 (Electrical Characteristics).

Rev E Document (9/2011)

Removed data sheet clarification 12 (Guidelines for Getting Started). Added new data sheet clarification 12 (Electrical Specification). Added new silicon revision (**C2**).

Rev F Document (7/2014)

Added MPLAB X IDE; Added Module 8, Timer1/3 to Silicon Errata Issues.

Data Sheet Clarifications: Removed Modules 1 through 12.

Rev G Document (9/2015)

Data Sheet Clarifications: Added Modules 1 and 2.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-852-9

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15